Fibronectin aggregation in multiple sclerosis lesions impairs remyelination.

نویسندگان

  • Josephine M J Stoffels
  • Jenny C de Jonge
  • Mirjana Stancic
  • Anita Nomden
  • Miriam E van Strien
  • Dan Ma
  • Zuzana Sisková
  • Olaf Maier
  • Charles Ffrench-Constant
  • Robin J M Franklin
  • Dick Hoekstra
  • Chao Zhao
  • Wia Baron
چکیده

Remyelination following central nervous system demyelination is essential to prevent axon degeneration. However, remyelination ultimately fails in demyelinating diseases such as multiple sclerosis. This failure of remyelination is likely mediated by many factors, including changes in the extracellular signalling environment. Here, we examined the expression of the extracellular matrix molecule fibronectin on demyelinating injury and how this affects remyelination by oligodendrocytes progenitors. In toxin-induced lesions undergoing efficient remyelination, fibronectin expression was transiently increased within demyelinated areas and declined as remyelination proceeded. Fibronectin levels increased both by leakage from the blood circulation and by production from central nervous system resident cells. In chronically demyelinated multiple sclerosis lesions, fibronectin expression persisted in the form of aggregates, which may render fibronectin resistant to degradation. Aggregation of fibronectin was similarly observed at the relapse phase of chronic experimental autoimmune encephalitis, but not on toxin-induced demyelination, suggesting that fibronectin aggregation is mediated by inflammation-induced demyelination. Indeed, the inflammatory mediator lipopolysaccharide induced fibronectin aggregation by astrocytes. Most intriguingly, injection of astrocyte-derived fibronectin aggregates in toxin-induced demyelinated lesions inhibited oligodendrocyte differentiation and remyelination, and fibronectin aggregates are barely expressed in remyelinated multiple sclerosis lesions. Therefore, these findings suggest that fibronectin aggregates within multiple sclerosis lesions contribute to remyelination failure. Hence, the inhibitory signals induced by fibronectin aggregates or factors that affect fibronectin aggregation could be potential therapeutic targets for promoting remyelination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Astrocyte-derived tissue Transglutaminase affects fibronectin deposition, but not aggregation, during cuprizone-induced demyelination

Astrogliosis as seen in Multiple Sclerosis (MS) develops into astroglial scarring, which is beneficial because it seals off the site of central nervous system (CNS) damage. However, astroglial scarring also forms an obstacle that inhibits axon outgrowth and (re)myelination in brain lesions. This is possibly an important cause for incomplete remyelination in the CNS of early stage MS patients an...

متن کامل

Nodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis.

Saltatory conduction in myelinated fibres depends on the specific molecular organization of highly specialized axonal domains at the node of Ranvier, the paranodal and the juxtaparanodal regions. Voltage-gated sodium channels (Na(v)) have been shown to be deployed along the naked demyelinated axon in experimental models of CNS demyelination and in multiple sclerosis lesions. Little is known abo...

متن کامل

The EIIIA domain from astrocyte‐derived fibronectin mediates proliferation of oligodendrocyte progenitor cells following CNS demyelination

Central nervous system remyelination by oligodendrocyte progenitor cells (OPCs) ultimately fails in the majority of multiple sclerosis (MS) lesions. Remyelination benefits from transient expression of factors that promote migration and proliferation of OPCs, which may include fibronectin (Fn). Fn is present in demyelinated lesions in two major forms; plasma Fn (pFn), deposited following blood-b...

متن کامل

GD1a Overcomes Inhibition of Myelination by Fibronectin via Activation of Protein Kinase A: Implications for Multiple Sclerosis.

Remyelination failure by oligodendrocytes contributes to the functional impairment that characterizes the demyelinating disease multiple sclerosis (MS). Since incomplete remyelination will irreversibly damage axonal connections, treatments effectively promoting remyelination are pivotal in halting disease progression. Our previous findings suggest that fibronectin aggregates, as an environmenta...

متن کامل

CCR5 expression on macrophages/microglia is associated with early remyelination in multiple sclerosis lesions.

Remyelination in multiple sclerosis (MS) occurs spontaneously and extensively. The underlying mechanisms, however, are only partly understood. Findings in experimental animal settings suggest that inflammation promotes remyelination and repair. Here, we characterized the chemokine receptor expression profiles of macrophages/microglia in early remyelinating and completely remyelinated lesions co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 136 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2013